If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+72t+3=84
We move all terms to the left:
16t^2+72t+3-(84)=0
We add all the numbers together, and all the variables
16t^2+72t-81=0
a = 16; b = 72; c = -81;
Δ = b2-4ac
Δ = 722-4·16·(-81)
Δ = 10368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10368}=\sqrt{5184*2}=\sqrt{5184}*\sqrt{2}=72\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-72\sqrt{2}}{2*16}=\frac{-72-72\sqrt{2}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+72\sqrt{2}}{2*16}=\frac{-72+72\sqrt{2}}{32} $
| 7^3x=49^4x+5 | | 3/5x-10=41 | | X(15-7x)=0 | | -6(10-x)=-90 | | 6x+10=18+5x | | 2^x=1.46 | | 8/1+c=5/4 | | 6(x+1)+9x-29=180 | | -6x-7=-1(-9 | | 8/1+c=5/4 | | 12x=4(3×-1) | | 2x+5=9x+21 | | -8x-18=-82 | | -9=-6x+7x-9 | | (4x-8)+6=-9+5x | | 6(x+1)+9x-23=180 | | 5.2x+1600=27.04+40x | | d•3=6 | | 2+3x=×-6 | | 8w=91;w=11 | | (3y+5)+(2y-7)=180 | | 6y+7=93 | | 2/9x+15=15 | | 5m^2=12+11m | | 4^(x+8)=12 | | x+4.6=3.5 | | 7/11x+15=34 | | 3x^2-5x-17=x-4 | | 7n+8=2 | | 18.50+(2*x)=104.50 | | 6(x+1)+9x-123=180 | | b/14=70 |